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SHORT COMMUNICATIONS

The polarization correction for upper level geometry using crystal monochromatized radi-
ation. By H.A.Lgevy and R.D. ErLisoN, Chemistry Division, Oak Ridge National Laboratory, Oack Ridge,

Tennessee,* U.S.A.

(Recetved 20 July 1959 and in revised form 3 August 1959)

The polarization correction for erystal monochromatized
radiation, when expressed in terms of angles referred to
an instrumental polar axis, depends on the orientation
of this axis with respect to the plane of incidence at the
monochromator. In several presentations of the form of
this correction (Whittaker, 1953; Azaroff, 1955, 1956;
Bond, 1959), no specification of this variable was made,
although a particular value was evidently assumed. We
present here an evaluation of the polarization factor
taking explicit account of the variable in question.
Azaroff (1955) has given the following general ex-
pression for the polarization correction P when crystal-
monochromatized radiation is employed:

(1 +cos? 20,,) P =(cos? 20, cos? ¢ +sin? g) cos? 20;
+cos? 20, sin? g +cos? g .

Here 6, is the Bragg angle of the monochromator,
0s that of the sample reflection, and ¢ the angle between
the normals to the planes of incidence at the mono-
chromator and sample.

Application of this expression to a given technique of

* Work performed for the U.S. Atomic Energy Commission
at the Oak Ridge National Laboratory, operated by the
Union Carbide Corporation, Oak Ridge, Tennessee.

measurement is essentially the task of evaluating the
angle g in terms of convenient variables. For inclined-axis
Weissenberg measurements (see Fig. 1), these may be
taken as the latitude angles x4 and » of the primary
monochromatic beam and the reflected beam with respect
to the equatorial plane of the measuring instrument,
together with the Bragg angle of the sample reflection 6.
The latter can be re-expressed, if desired, in terms of the
latitude » and azimuth 2 of the reflected beam. The
orientation of the instrumental axis may be specified by
means of a single angle o, which we here define as the
angle between the normals to the monochromator plane
of incidence and the plane generated by the Weissenberg
axis and the primary monochromatic beam. Fig. 1 shows
the geometric elements in an isometric view and projected
onto the plane normal to the primary monochromatic
beam. The sign of ¢ is to be taken in such a way that the
relation ¢ =0+ = holds for the acute angles = and ¢ as
shown in the figure. Here 7 is the angle between normals
to the planes generated by the primary monochromatic
beam with the Weissenberg axis and with the reflected
beam.

The evaluation of T will thus yield the desired angle g.
For this purpose, we define unit vectors s, s, and z
along the directions of the primary monochromatic

|\

Fig. 1. Isometric drawing of the geometric elements of inclined-axis Weissenberg measurements, and a projection onto the

plane normal to s;.

Shown here is the equi-inclination case, so that the angle u is negative. s’, z’, and s, are the projections

of s, z, and s;, while ng ¢ n; s, and n; s, are the common normals to s, and s, s and s;, and z and S, respectively.
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beam, the reflected beam and the Weissenberg axis,
respectively, and let z make an obtuse angle with s,.
It follows that

cos T = (S x8g) * (z xSy)/{[sin (s, Sy)| [sin (z, 8y)[}
= (S X S8g) ' (Z xSy)/{sin 205 cos u} .

(Note that u is the complement of the acute angle
between —z and s,.) By means of a vector identity,
the numerator is transformed to

{8 x8y) * (ZXSg) = (8¢ 8g) (S Z) —(Sg - Z)(S - S)

= cos (S, Z) —cos (Sg, Z) cos (S, Sg)

sin v —sin u cos 26; .

Following Buerger (1942), u and v are measured in the
same direction from the equatorial plane. Hence in the
usual experimental arrangements, as in Fig. 1, u and
sin u take negative (or zero) values. Thus the relations

cos 7= (sin v —sin u cos 26;)/(sin 205 cos u)
and
0=T + 0o

yield the desired angle p.
The special cases most frequently met in practice are
the four combinations of the following two conditions:

a. a=mn/2 or 6=0.
b. u= —v (equi-inclination) or =0 (normal incidence).
For these, the expressions giving ¢ and P are the follow-
ing:
o=n/2, u=—v:
sin g =tan v ctn 05
(14cos? 20,)P =cos? 26, (1 —cos? » sin? 1)

+1—cos?vsin? v(1l+cos 1)2.
o=mn/2, u=0:

sin g =sin v csc 205
(14cos? 260,)P =cos? 20, +cos?v(1 —cos? 20, sin? 1) .
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=0, u=—v:

cos p=tan v ctn Os .
(1 +cos? 20.,)P =cos? 20p,[1 —sin? » cos? ¥(1 +cos ¥)?]
+1—cos?vsin? 7.
6=0, u=0:

cos g =sin » cse 265 .
(1 +cos? 20p)P=1+cos? v (cos? 20, —sin® 1) .

The relations cosf =cosv cos 2/2 and cos26 =cosv cos ¥
for the equi-inclination and normal incidence cases,
respectively, have been used in deriving these expressions.

Whittaker (1953) has given an expression for P in
generally inclined-beam Weissenberg geometry without
stating the orientation of the instrumental axis to which
it applies. We find that it is equivalent to our expressions
for o = /2. Bond (1959) has recently given the reduction
of Whittaker’s expression for equi-inclination geometry
and has combined this factor with the Lorentz correction.

For a given level in the normal incidence method,
the angle ¢ takes values in the range o to ¢4 (7/2) —v as
7 ranges from 0 to =/2. A contrary statement by Azaroff
(1955) that in this method g is equal to », constant for
a given level, is evidently in error.

In the case of the precession method, Azaroff (1955)
has pointed out that both ¢ and 265 are related in a simple
way to co-ordinates on the film. The polarization factor
is then easily obtained from his original expression.
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A new polymorph of boron.* By Crauvpe P. TarLey, Eaxperiment Inc., Rickmond, Va. and Sam LaPrsca
and BN Post, Polytechnic Institute of Brooklyn, Brooklyn, N.Y., U.S.4.

(Recetved 2 June 1959 and in revised form 8 October 1959)

Boron has long been known to exist in several poly-
morphic modifications, but the systematic study of the
structures of these polymorphs was not begun until
relatively recently. Hoard et al. (1958) have determined
the crystal structure of a tetragonal form of boron; the
unit-cell dimensions are a =875 and ¢ =>5-06 A. The cell
contains 50 atoms. Sands & Hoard (1957) also reported a
rhombohedral form of boron; @ =10-12 A and « =65° 28’.
The triply primitive hexagonal cell to which this rhombo-
hedral cell may be referred has axial dimensions of
a=10-95 and ¢=23-73 A. The primitive rhombohedral
cell contains 108 atoms. More recently, McCarty et al.
(1958) reported another rhombohedral form of boron;

* Work supported by the Office of Naval Research.

a=5057 A and «=58°4'. This cell contains only 12
atoms; the dimensions of the hexagonal cell to which it
can be referred are: a =4-908 and ¢=12-567 A.

All three polymorphs mentioned above have been
studied by single crystal methods. Several additional
modifications have been reported, based on studies of
polycrystalline specimens (Naray-Szabo & Tobias, 1949;
Langrenaudie, 1954; Rollier, 1953; Laubengayer et al.
1943).

Recently, still another polymorphs was detected in
our laboratories.} Specimens were prepared by the

+ The specimen was prepared by one of us (C.T.) at Ex-
periment Inc. Richmond, Va.; X-ray studies were carried out
at the Polytechnic Institute of Brooklyn.



